A Generalized Backward Equation For One Dimensional Processes

نویسندگان

  • George Lowther
  • GEORGE LOWTHER
چکیده

Suppose that a real valued process X is given as a solution to a stochastic differential equation. Then, for any twice continuously differentiable function f , the backward Kolmogorov equation gives a condition for f(t,X) to be a local martingale. We generalize the backward equation in two main ways. First, it is extended to non-differentiable functions. Second, the process X is not required to satisfy an SDE. Instead, it is only required to be a quasimartingale satisfying an integrability condition, and the martingale condition for f(t,X) is then expressed in terms of the marginal distributions, drift measure and jumps of X . The proof involves the stochastic calculus of Dirichlet processes and a time-reversal argument. These results are then applied to show that a continuous and strong Markov martingale is uniquely determined by its marginal distributions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Dimensional Laminar Convection Flow of Radiating Gas over a Backward Facing Step in a Duct

In this study, three-dimensional simulations are presented for laminar forced convection flow of a radiating gas over a backward-facing step in rectangular duct. The fluid is treated as a gray, absorbing, emitting and scattering medium. The three-dimensional Cartesian coordinate system is used to solve the governing equations which are conservations of mass, momentum and energy. These equations...

متن کامل

When the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it

In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...

متن کامل

Generalized Backward Stochastic Differential Equation With Two Reflecting Barriers and Stochastic Quadratic Growth

In this paper we study one-dimensional generalized reflected backward stochastic differential equation with two barriers and stochastic quadratic growth. We prove the existence of a maximal solution when there exists a semimartingale between the barriers L and U , the generator f is continuous with general growth with respect to the variable y and stochastic quadratic growth with respect to the...

متن کامل

The solving linear one-dimemsional Volterra integral equations of the second kind in reproducing kernel space

In this paper, to solve a linear one-dimensional Volterra  integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of  integral equation in terms of the basis functions. The examples presented in this ...

متن کامل

Three-dimensional Free Vibration Analysis of a Transversely Isotropic Thermoelastic Diffusive Cylindrical Panel

The present paper is aimed to study an exact analysis of the free vibrations of a simply supported, homogeneous, transversely isotropic, cylindrical panel based on three-dimensional generalized theories of thermoelastic diffusion. After applying the displacement potential functions in the basic governing equations of generalized thermoelastic diffusion, it is noticed that a purely transverse mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008